Bayesian Inversion by ω-Complete Cone Duality
نویسندگان
چکیده
The process of inverting Markov kernels relates to the important subject of Bayesian modelling and learning. In fact, Bayesian update is exactly kernel inversion. In this paper, we investigate how and when Markov kernels (aka stochastic relations, or probabilistic mappings, or simply kernels) can be inverted. We address the question both directly on the category of measurable spaces, and indirectly by interpreting kernels as Markov operators: For the direct option, we introduce a typed version of the category of Markov kernels and use the so-called ‘disintegration of measures’. Here, one has to specialise to measurable spaces borne from a simple class of topological spaces -e.g. Polish spaces (other choices are possible). Our method and result greatly simplify a recent development in Ref. [4]. For the operator option, we use a cone version of the category of Markov operators (kernels seen as predicate transformers). That is to say, our linear operators are not just continuous, but are required to satisfy the stronger condition of being ω-chain-continuous.1 Prior work shows that one obtains an adjunction in the form of a pair of contravariant and inverse functors between the categories of L1and L∞-cones [3]. Inversion, seen through the operator prism, is just adjunction.2 No topological assumption is needed. We show that both categories (Markov kernels and ω-chain-continuous Markov operators) are related by a family of contravariant functors Tp for 1 ≤ p ≤ ∞. The Tp’s are Kleisli extensions of (duals of) conditional expectation functors introduced in Ref. [3]. With this bridge in place, we can prove that both notions of inversion agree when both defined: if f is a kernel, and f† its direct inverse, then T∞(f) = T1(f). 1998 ACM Subject Classification Semantics of programming languages
منابع مشابه
Joint Bayesian Stochastic Inversion of Well Logs and Seismic Data for Volumetric Uncertainty Analysis
Here in, an application of a new seismic inversion algorithm in one of Iran’s oilfields is described. Stochastic (geostatistical) seismic inversion, as a complementary method to deterministic inversion, is perceived as contribution combination of geostatistics and seismic inversion algorithm. This method integrates information from different data sources with different scales, as prior informat...
متن کاملAquifer heterogeneity from SH-wave seismic impedance inversion
We collected SH-wave seismic reflection data over a shallow aquifer in southwestern British Columbia to investigate the use of such data in hydrogeologic applications. We used this data set in developing a methodology that uses cone penetrometer data as an integral part of the inversion and interpretation of the seismic data. A Bayesian inversion technique converts the seismic amplitude variati...
متن کاملSAR Interferometry, Bayesian inversion, Sarpol-e zahab earthquake, Fault source parameters
Abstract Earthquakes occur at teh border of teh plates and faults, causing financial and casual damages. Teh study of earthquakes and surface deformation is useful in understanding teh mechanism of earthquakes and managing teh risks and crises of earthquakes. A fault can be specified by its geometric source parameters. In Okada’s definition, these parameters are length, width, depth, strike, di...
متن کامل18th International Conference on Concurrency Theory
The process of inverting Markov kernels relates to the important subject of Bayesian modelling and learning. In fact, Bayesian update is exactly kernel inversion. In this paper, we investigate how and when Markov kernels (aka stochastic relations, or probabilistic mappings, or simply kernels) can be inverted. We address the question both directly on the category of measurable spaces, and indire...
متن کاملInverse Problems in Imaging Systems and the General Bayesian Inversion Frawework
In this paper, first a great number of inverse problems which arise in instrumentation, in computer imaging systems and in computer vision are presented. Then a common general forward modeling for them is given and the corresponding inversion problem is presented. Then, after showing the inadequacy of the classical analytical and least square methods for these ill posed inverse problems, a Baye...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016